UV radiation has three wavelength zones: UV-A, UV-B, and UV-C, and it is this last region, the shortwave UV-C, that has germicidal properties for disinfection. A low-pressure mercury arc lamp resembling a fluorescent lamp produces the UV light in the range of 254 manometers (nm). A nm is one billionth of a meter (10^-9 meter). These lamps contain elemental mercury and an inert gas, such as argon, in a UV-transmitting tube, usually quartz.
Traditionally, most mercury arc UV lamps have been the so-called “low pressure” type, because they operate at relatively low partial pressure of mercury, low overall vapor pressure (about 2 mbar), low external temperature (50-100oC) and low power. These lamps emit nearly monochromatic UV radiation at a wavelength of 254 nm, which is in the optimum range for UV energy absorption by nucleic acids (about 240-280 nm).
In recent years medium pressure UV lamps that operate at much higher pressures, temperatures and power levels and emit a broad spectrum of higher UV energy between 200 and 320 nm have become commercially available. However, for UV disinfection of home drinking water at the household level, the low-pressure lamps and systems are entirely adequate and even preferred to medium pressure lamps and systems. This is because they operate at lower power, lower temperature, and lower cost while being highly effective in disinfecting more than enough water for daily household use.
An essential requirement for UV disinfection with lamp systems is an available and reliable source of electricity. While the power requirements of low-pressure mercury UV lamp disinfection systems are modest, they are essential for lamp operation to disinfect water. Since most microorganisms are affected by radiation around 260 nm, UV radiation is in the appropriate range for germicidal activity. There are UV lamps that produce radiation in the range of 185 nm that are effective on microorganisms and will also reduce the total organic carbon (TOC) content of the water.
For typical UV system, approximately 95 percent of the radiation passes through a quartz glass sleeve and into the untreated water. The water is flowing as a thin film over the lamp. The glass sleeve is designed to keep the lamp at an ideal temperature of approximately 104 °F.
UV Radiation (How it Works)
UV radiation affects microorganisms by altering the DNA in the cells and impeding reproduction. UV treatment does not remove organisms from the water, it merely inactivates them. The effectiveness of this process is related to exposure time and lamp intensity as well as general water quality parameters. The exposure time is reported as “microwatt-seconds per square centimeter” (uwatt-sec/cm^2), and the U.S. Department of Health and Human Services has established a minimum exposure of 16,000 µwatt-sec/cm^2 for UV disinfection systems. Most manufacturers provide a lamp intensity of 30,000-50,000µwatt-sec/cm^2.
In general, coliform bacteria, for example, are destroyed at 7,000 µwatt-sec/cm^2. Since lamp intensity decreases over time with use, lamp replacement and proper pretreatment are key to the success of UV disinfection. In addition, UV systems should be equipped with a warning device to alert the owner when lamp intensity falls below the germicidal range. The following gives the irradiation time required to inactivate completely various microorganisms under 30,000 µwatt-sec/cm^2 dose of UV 254 nm.
Used alone, UV radiation does not improve the taste, odor, or clarity of water. UV light is a very effective disinfectant, although the disinfection can only occur inside the unit. There is no residual disinfection in the water to inactivate bacteria that may survive or may be introduced after the water passes by the light source.
The percentage of microorganisms destroyed depends on the intensity of the UV light, the contact time, raw water quality, and proper maintenance of the equipment. If material builds up on the glass sleeve or the particle load is high, the light intensity and the effectiveness of treatment are reduced. At sufficiently high doses, all waterborne enteric pathogens are inactivated by UV radiation.
The general order of microbial resistance (from least to most) and corresponding UV doses for extensive (>99.9%) inactivation are: vegetative bacteria and the protozoan parasites Cryptosporidium parvum and Giardia lamblia at low doses (1-10 mJ/cm2) and enteric viruses and bacterial spores at high doses (30-150 mJ/cm2). Most low-pressure mercury lamp UV disinfection systems can readily achieve UV radiation doses of 50-150 mJ/cm2 in high quality water, and therefore efficiently disinfect essentially all waterborne pathogens.
However, dissolved organic matter, such as natural organic matter, certain inorganic solutes, such as iron, sulfites and nitrites, and suspended matter (particulates or turbidity) will absorb UV radiation or shield microbes from UV radiation, resulting in lower delivered UV doses and reduced microbial disinfection. Another concern about disinfecting microbes with lower doses of UV radiation is the ability of bacteria and other cellular microbes to repair UV-induced damage and restore infectivity, a phenomenon known as reactivation.
UV inactivates microbes primarily by chemically altering nucleic acids. However, the UV-induced chemical lesions can be repaired by cellular enzymatic mechanisms, some of which are independent of light (dark repair) and others of which require visible light (photorepair or photoreactivation). Therefore, achieving optimum UV disinfection of water requires delivering a sufficient UV dose to induce greater levels of nucleic acid damage and thereby overcome or overwhelm DNA repair mechanisms.
Specializing in UV water purification and disinfection solutions, PolexTech designs, and engineers all product solutions for the whole home, commercial, industrial, and municipal, We provide a “one-stop” solution for all your water purification and disinfection needs.
If you want to learn more about PolexTech UV Water Sterilizer System, welcome to check on www.polextech.com, or please contact us requesting for catalogue. If you have some ideas to share and discuss together, please feel free to comment as well, PolexTech team members will get back to you within 12 working hours. Thank you, have a nice day.